Tutorial 11

In the problems below, V is a finite-dimensional vector space and \mathbb{F} is either \mathbb{R} or \mathbb{C} unless otherwise stated.

1. Let $T \in \mathcal{L}(V)$. Show there exists $S \in \mathcal{L}(V)$ and $c \in \mathbb{F}$ such that trace $S=0$ and

$$
T=S+c I
$$

2. Suppose $\mathbb{F}=\mathbb{R}$ and define

$$
A=\left[\begin{array}{ccc}
4 & c & c^{7} \\
c & 0 & \sin (c) \\
0 & 0 & 4
\end{array}\right]
$$

where $c \in \mathbb{R}$. Find all values of c such that $A=B^{2}$ for some real matrix B.
3. Suppose $\mathbb{F}=\mathbb{C}$ and define

$$
A=\left[\begin{array}{ccc}
c & -2 & -c \\
1 & c^{2}-3 & c^{5}-2 \\
\cos (\pi c) & 2 & 4-3 c
\end{array}\right]
$$

where $c \in \mathbb{C}$. Find all values of c such that A is nilpotent.
4. Suppose V is an inner product space. Let $T \in \mathcal{L}(V)$ be such that

$$
T^{*}=-T
$$

We say such an operator is skew-adjoint.
(a) Show that if $\mathbb{F}=\mathbb{R}$ and $\operatorname{dim} V$ is odd then T is not invertible.
(b) Show that if $\mathbb{F}=\mathbb{C}, \operatorname{dim} V$ is odd, and T is invertible then T has a nonreal eigenvalue.
5. Note that 247,418 , and 931 are all integer multiples of 19 . Without actually calculating the determinant, prove that $\operatorname{det} A$ is also an integer multiple of 19 , where

$$
A=\left(\begin{array}{lll}
2 & 4 & 7 \\
4 & 1 & 8 \\
9 & 3 & 1
\end{array}\right)
$$

6. Suppose $\mathbb{F}=\mathbb{C}$ and let $T \in \mathcal{L}(V)$ be invertible such that all eigenvalues of T are real. Further suppose

$$
\operatorname{trace} T^{2}=\operatorname{trace} T^{3}=\operatorname{trace} T^{4}
$$

What is trace T ?
7. Let $f: \mathcal{L}(V) \rightarrow \mathbb{F}$ be a linear functional such that for all $S, T \in \mathcal{L}(V)$,

$$
f(S T)=f(T S)
$$

and $f(I)=\operatorname{dim} V$. Show that f is the trace map.

